What confusion leads from self driving vehicles and their talking to each other?

This is a light follow-up from my “Do self driving cars make the courier redundant?”  post from January. I’m wondering which first- and second-order effects occur from self-driving cars talking to each other.

Let’s assume they can self-drive and self-park and that they have some ability to communicate with each other. Noting their speed and intent should help self-driving cars make better utilisation of the road (they could drive closer together), they could quickly signal if they have a failure (e.g. “My brake readings have just become odd – everyone pull back! I’m slowing using the secondary brake system”), they can signal that e.g. they intend to reverse park and that other cars should slow further back along the road to avoid having to halt. It is hard to see how a sensibly designed system of self-driving cars could be worse than a similar sized pack of normal humans (who might be tired, overconfident, in a rush etc) behind the wheel.

Would cars deliberately lie? There are many running jokes about drivers (often “elsewhere” in the world) where some may signal one way and then exploit nearby gaps regardless of their signalled intention. Might cars do the same? By design or by poor coding? I’d guess people might mod their driving computer to help them get somewhere faster – maybe they’d ask it to be less cautious in its manoeuvres  (taking turns quicker, giving less distance between other vehicles) or hypermile more closely than a human would. Manufacturers would fight back as these sorts of modifications would increase their liabilities and accidents would damage their brand.

What about poorly implemented protocols? On the Internet with TCP/IP we suffer from bufferbloat – many intermediate devices between packet destinations have varying sized buffers, they all try to cache to manage traffic but we end up with lower throughput and odd jams that are rather unpredictable and contrary to the design goal. Cars could have poor implementations of communication protocols (just as some smartphones and laptop brands have trouble with certain WiFi routers), so they’d fail to talk or maybe talk with errors.

Maybe cars would not communicate directly but would implement some boids-like behaviours based on local sensing (probably more robust but also less efficient due to no longer-range negotiation). Even so local odd behaviours might emerge – two cars backing off from each other, then accelerating to close the gap, then repeating – maybe a group of cars get into an unstable ‘dance’ whilst driving down the motorway. This might only be visible from the air and would look rather inhuman.

Presumably self-driving cars would have to avoid hitting humans at all costs. This might make humans less observant as they cross the road – why look if you know that a car is always anticipating (and avoiding) your arrival into the road? This presumably leaves self-driving cars at the mercy of mischievous humans – leaving out human-like dolls in the road that cause slow-and-avoid behaviours, just for kicks.

Governments are likely to introduce some kind of control overrides into the cars in the name of safety and national security (NSA/GCHQ – looking at you). This is likely to be as secure as the “unbreakable” DVD encryption, since any encryption system released into the wild is subject to various attacks. Having people steal cars or subvert their behaviours once the backdoors and overrides are noticed seems inevitable.

I wonder what sort of second order effects we’d see? I suspect that self-driving delivery vehicles would shift to more night work (when the roads are less congested and possibly petrol is dynamically priced to be cheaper), so roads could be less congested by day (and so could be filled by more humans as they commute longer distances to work?). Maybe people en-mass forget how to drive? More people will never have to drive a car, so we’d need fewer driving instructors. Maybe we’d need fewer parking spaces as cars could self-park elsewhere and return when summoned – maybe the addition of intelligence helps us use parking resources more efficiently?

If we have self-driving trucks then maybe the cost of removals and deliveries drop. No longer would I need to hire a large truck with a driver, instead the truck would drive itself (it’d still need loading/unloading of course). This would mean fewer people taking the larger-vehicle licensing exams, so fewer test centres (just as for driving schools) would be needed.

An obvious addition – if cars can self-drive then repair centres don’t need to be small and local. Whither the local street of car mechanics (inevitably of varying quality and, sadly, honesty)? I’d guess larger, out of town centralised garages more closely monitored by the manufacturers will surface (along with a fleet of pick-up trucks for broken-down vehicles). What happens to the local street of car mechanic shops? More hackspaces and assembly shops? Conversion to housing seems more likely.

If we need less parking spaces (e.g. in Hove [1927 photo!] there are huge boulevards – see Grand Avenue lanes here) then maybe we get more cycle lanes and maybe we can repurpose some of the road space for other usages – communal green patches (for kids and/or for growing stuff?).

The NYTimes has a good article on how driverles cars could reshape cities.

Charles Stross has a nice thread on geo-political consequences of self-driving cars. One comment alludes to improved social lives – if we can get to and from a party/restaurant/pub/nice social scene very easily (without e.g. hoping for the last Tube train home in London or a less pleasant bus journey), maybe our social dimension increases? The comment on flying vs driving  is interesting – you’d probably drive further rather than fly if you could sleep for much of the journey, so that hurts flight companies and increases the burden on road maintenance (but maybe preserves motorway service stations that might otherwise get less business since you’d be less in need of a break if you’re not concentrating on driving all the time!).

Hmmm…drone networks look like they might do interesting things for delivery to non-road locations, but drones have a limited range. What about coupling an HGV ‘mother truck’ with a drone fleet for the distribution of goods to remote locations, with the ‘mother truck’ containing a generator and a large storage unit of stuff-to-distribute. I’m thinking about feeding animals in winter that are stuck in fields, reaching hurricane survivors, more extreme running races (and hopefully helping to avoid deaths) or even supplying people living out of cities and in remote areas (maybe Amazon-by-drone deliveries whilst living up a mountain become feasible?).


Ian is a Chief Interim Data Scientist via his Mor Consulting. Sign-up for Data Science tutorials in London and to hear about his data science thoughts and jobs. He lives in London, is walked by his high energy Springer Spaniel and is a consumer of fine coffees.

2 Comments